

A monitoring architecture for self-configurable optical networks

<u>P. Castoldi¹,</u> G. Bernini², K. Christodoulopoulos³, F. Cugini⁴, N. Sambo¹

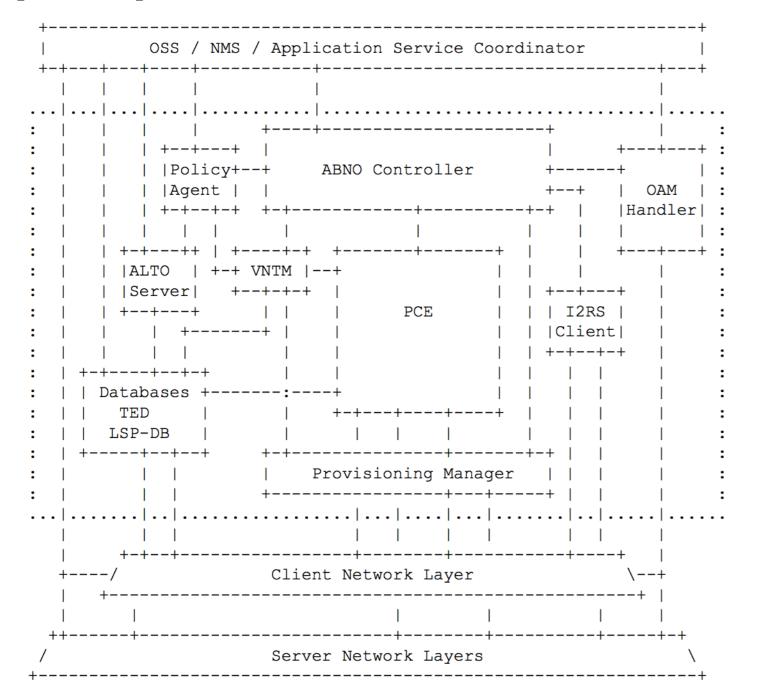
- 1: Scuola Superiore Sant'Anna, Pisa, Italy
- 2: Nextworks, Pisa, Italy
- 3: Computer Technology Institute & Press Diophantus, Patras, Greece
- 4: CNIT, Pisa, Italy

ICTON 2015, 5-9 July, 2015, Budapest, Hungary

Introduction

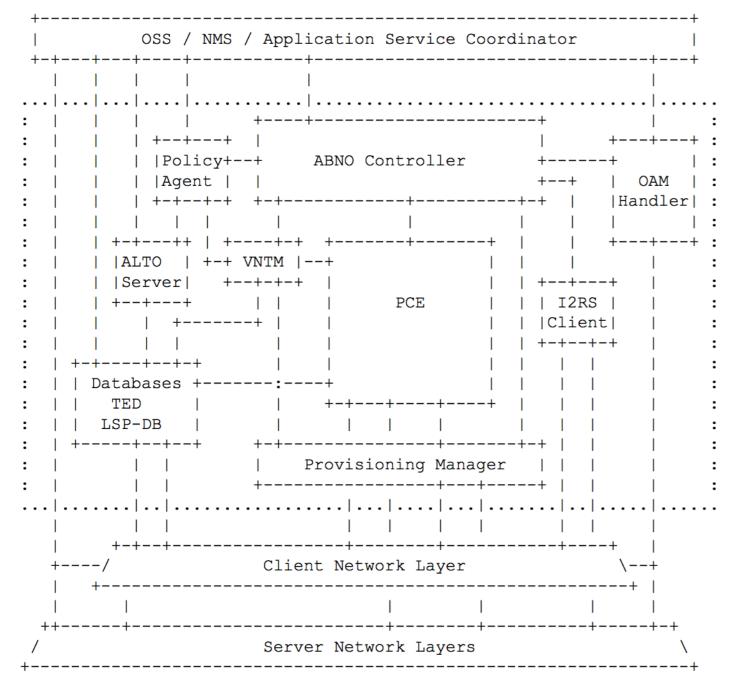
- Optical networks are evolving to support ultra-high rate and self-configurable operations, e.g. elastic adaptation and optimization of transmission parameters
- The operation, administration, and maintenance (OAM) are fundamental functionalities
- **Monitoring** is crucial to verify the actual matching of quality of transmission (QoT) requirements and Service Level Agreements (SLAs) and to **trigger** proper **actions** (e.g., adaptation of transmission parameters, re-routing) to react against link degradations/fault which degrade QoT and, in turn, SLA
- An emerging candidate for the control and orchestration of next generation optical networks is the Application-Based Network Operations (ABNO) architecture which includes the management of monitoring functionalities, through the OAM Handler

Introduction

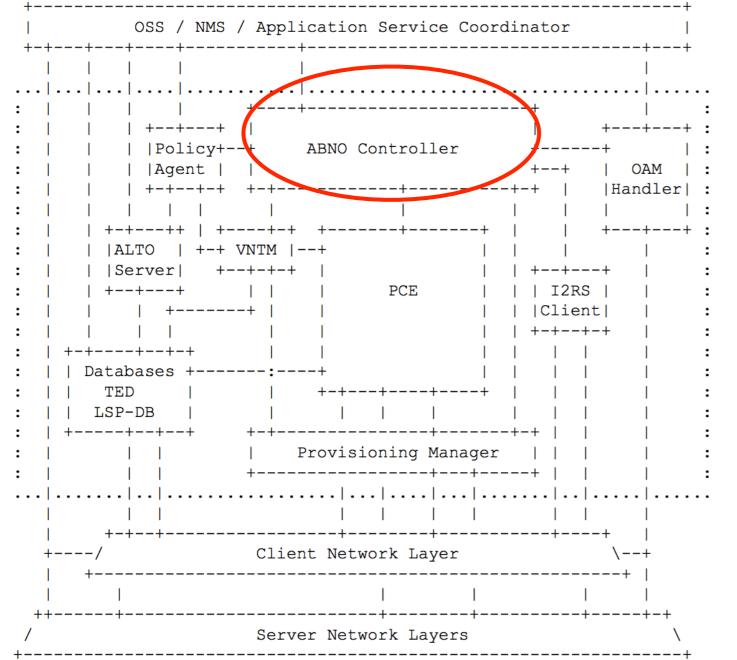

- Optical networks are evolving to support ultra-high rate and self-configurable operations, e.g. elastic adaptation and optimization of transmission parameters
- The operation, administration, and maintenance (OAM) are fundamental functionalities
- **Monitoring** is crucial to verify the actual matching of quality of transmission (QoT) requirements and Service Level Agreements (SLAs) and to **trigger** proper **actions** (e.g., adaptation of transmission parameters, re-routing) to react against link degradations/fault which degrade QoT and, in turn, SLA
- An emerging candidate for the control and orchestration of next generation optical networks is the Application-Based Network Operations (ABNO) architecture which includes the management of monitoring functionalities, through the OAM Handler

What we propose within the EU Project ORCHESTRA

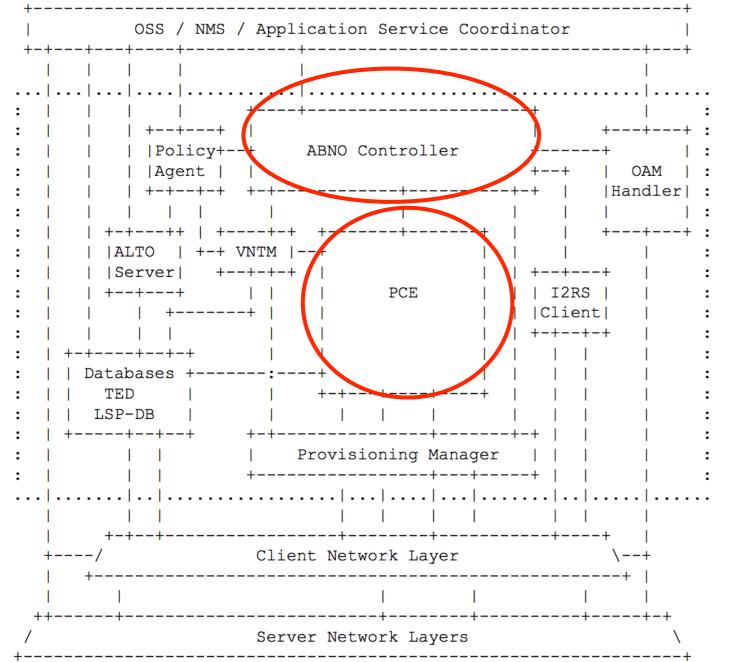
- hierarchical monitoring architecture, instead of a centralized OAM Handler, is proposed within the framework of the EU project ORCHESTRA: OAM Handler is the root of the hierarchy
- improved scalability and effective fault management are guaranteed by the hierarchy



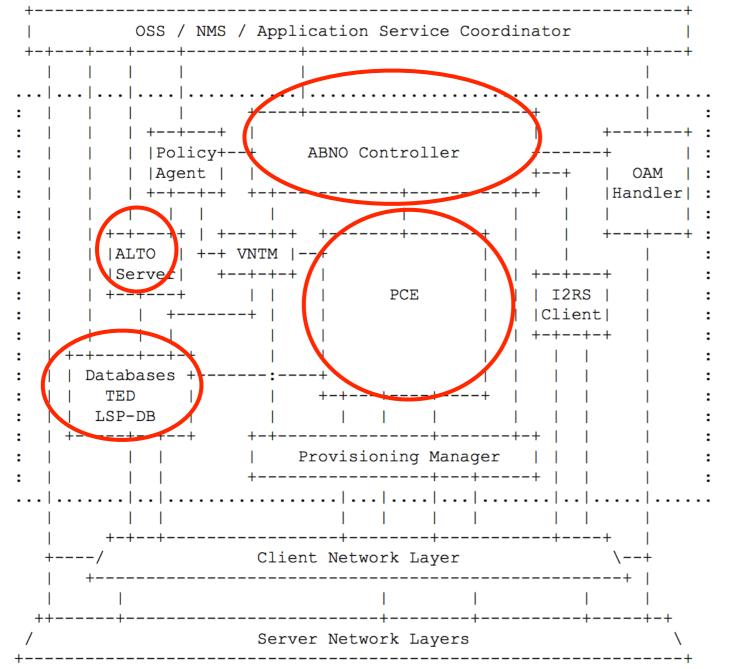
"Functional components are architectural concepts and have distinct and clear responsibilities" [RFC7491]



"Functional components are architectural concepts and have distinct and clear responsibilities" [RFC7491]



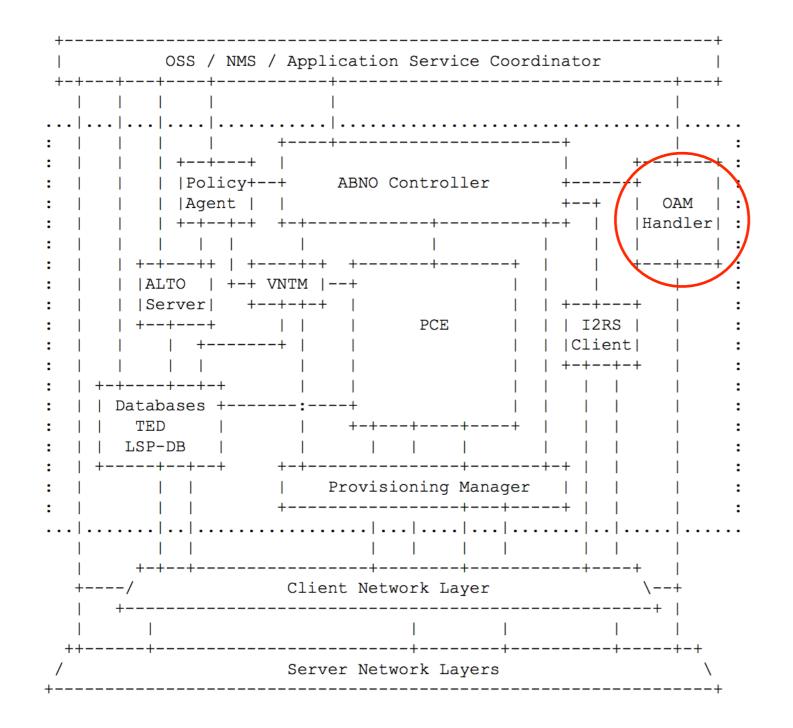
"Functional components are architectural concepts and have distinct and clear responsibilities" [RFC7491]


- **ABNO controller:** governs the behavior of the network in response to changing conditions and in accordance with application network requirements and policies
- **PCE:** path computation element

"Functional components are architectural concepts and have distinct and clear responsibilities" [RFC7491]

- **ABNO controller:** governs the behavior of the network in response to changing conditions and in accordance with application network requirements and policies
- **PCE:** path computation element
- **Databases:** Traffic Engineering Database (TED) and Label Switch Path DataBase (LSP-DB): the former for traffic engineering information, the latter for LSP info (e.g., frequency slot, path, bit rate)

"Functional components are architectural concepts and have distinct and clear responsibilities" [RFC7491]


- **ABNO controller:** governs the behavior of the network in response to changing conditions and in accordance with application network requirements and policies
- **PCE:** path computation element
- **Databases:** Traffic Engineering Database (TED) and Label Switch Path DataBase (LSP-DB): the former for traffic engineering information, the latter for LSP info (e.g., frequency slot, path, bit rate)
- Application-Layer Traffic Optimization (ALTO): to provide to the application layer a simplified view of the network for optimization (e.g., to better select paths in the network to carry application-layer traffic)

OAM Handler within ABNO architecture

-++++-		+			+ I
• • • • • • • • • • • •					
	+	+		+	I
++-					++
	-	ABNO Contro	oller	+	ł
Ager				++	OAM
	-+-+ +-+-	+-		-+-+	Handler
		 -+ ++-			
1 1 1 1 1 1	+-+ VNTM		++ I		+ I
Server	+-+-+-	•	I	++	+
+++		I PCE	י 1	12RS	· ·
+	+		I	Client	i i
	1		1	+-++	+
+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	+ I		1		1
Databases -	+:-	+			l I
TED		+-+	-++		
LSP-DB					
++++	+ +-+-		-+	-+-+	
		Provisioning	-++		1
· · · · · · · · · · · · · · · · · · ·	·			· · · · · · · · · · · · · · · · · · ·	
+-++		+	+	+	+
+/	Cli	ient Network I	ayer		\+
+			·		+
					I

OAM Handler within ABNO architecture

The OAM Handler:

- receives alerts about potential problems
- correlates them

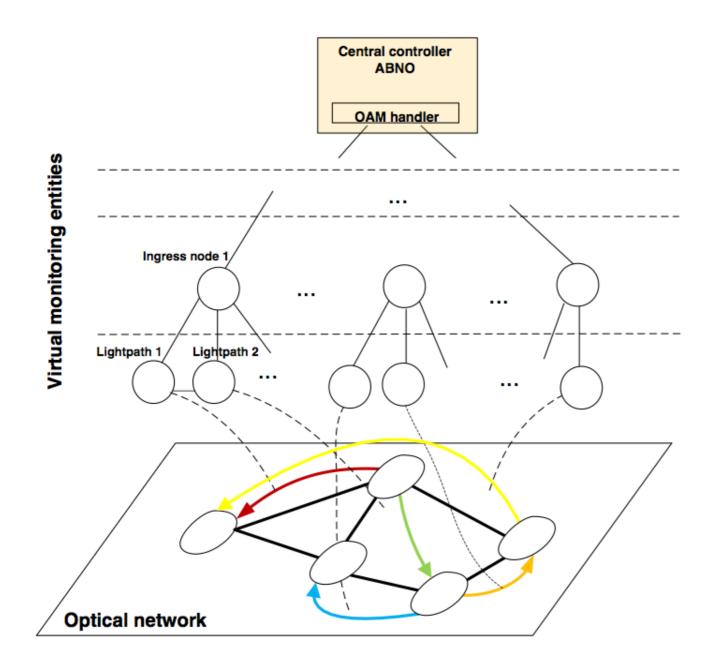
• **triggers** other components of the ABNO system to take **actions** to preserve or recover the services

The OAM Handler is the root of the proposed hierarchical monitoring architecture

Assumed monitors at the physical layer

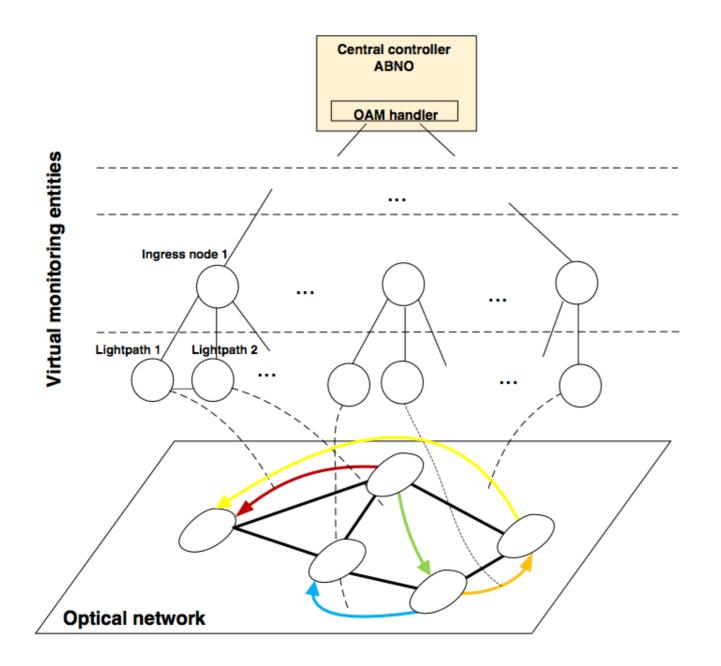
We will mainly focus on **LSP monitors** (however hierarchy can be applied to other monitors)

[ONDM2015] G. Meloni, L. Potì, N. Sambo, F. Fresi, F. Cavaliere, "Code-adaptive Transmission Accounting for Filtering Effects in EON", Proc. of ONDM 2015, Pisa, Italy

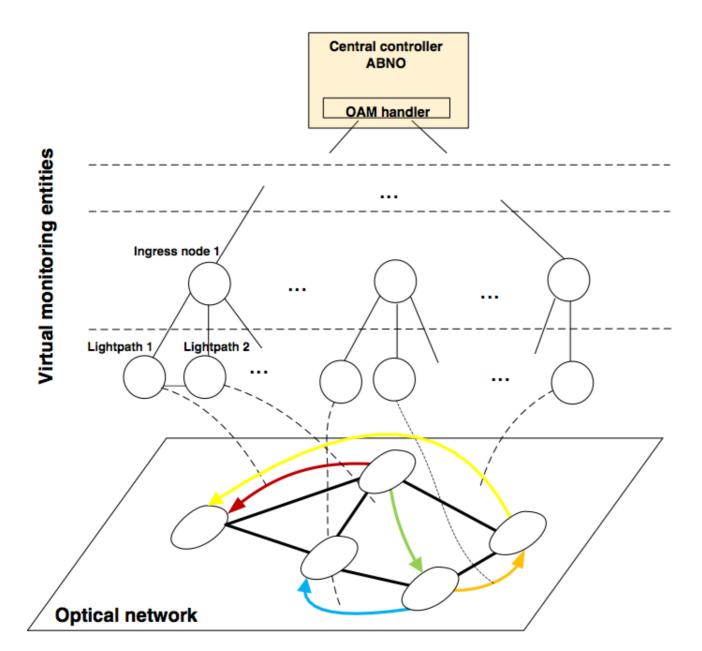

Assumed monitors at the physical layer

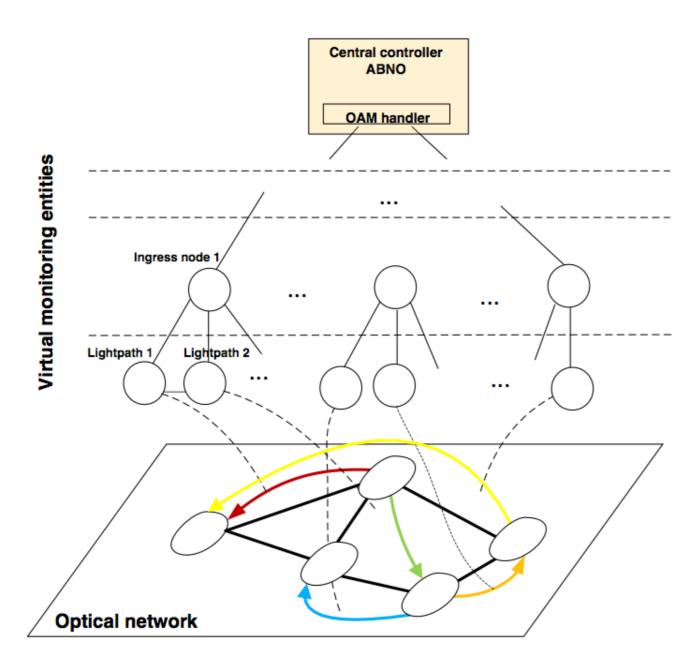
- link monitors (e.g., power monitors)
- node monitors (e.g., power monitors)

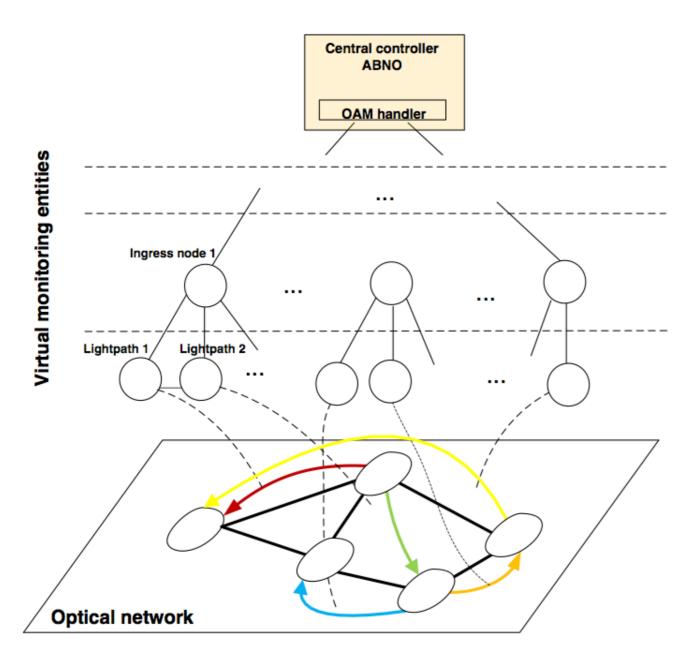
• **LSP monitors** may leverage on digital signal processing (DSP) functionalities installed in coherent receivers: may provide parameters such as pre-forward-error-correction bit error rate, symbol variance [ONDM2015], each related to a specific LSP


We will mainly focus on **LSP monitors** (however hierarchy can be applied to other monitors)

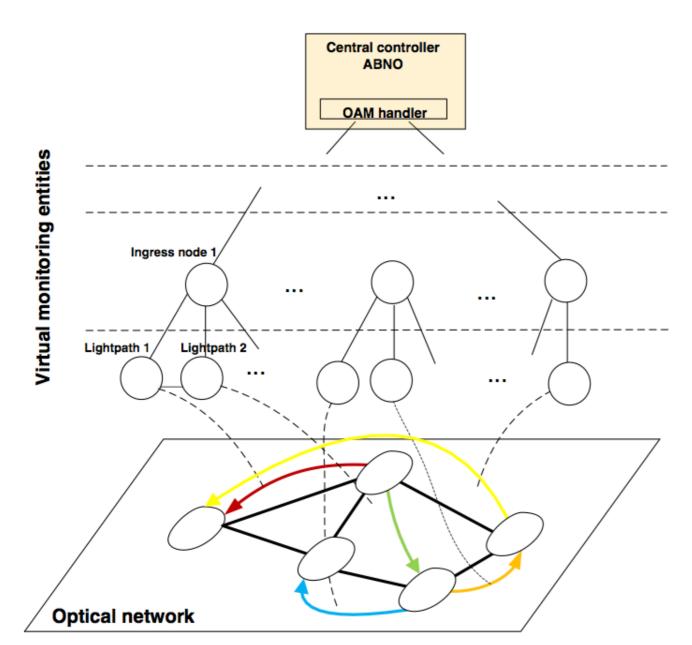
[ONDM2015] G. Meloni, L. Potì, N. Sambo, F. Fresi, F. Cavaliere, "Code-adaptive Transmission Accounting for Filtering Effects in EON", Proc. of ONDM 2015, Pisa, Italy



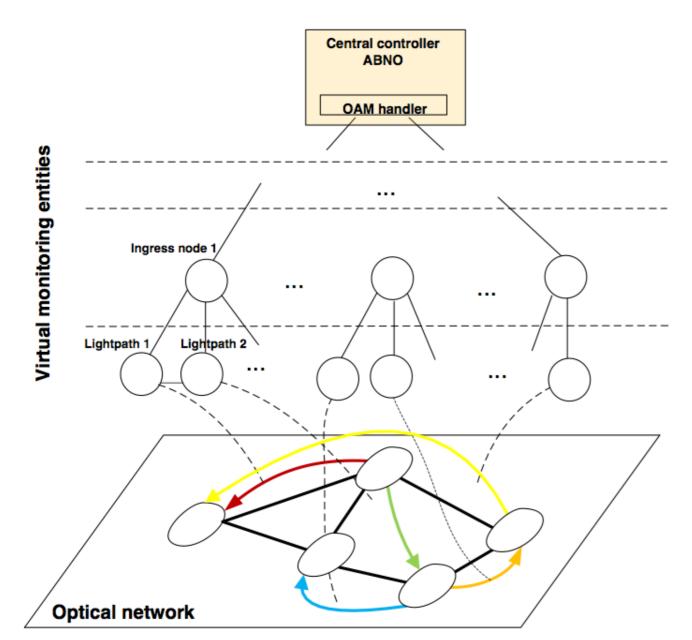

• Monitoring plane organized as a **hierarchy** of virtual monitoring entities



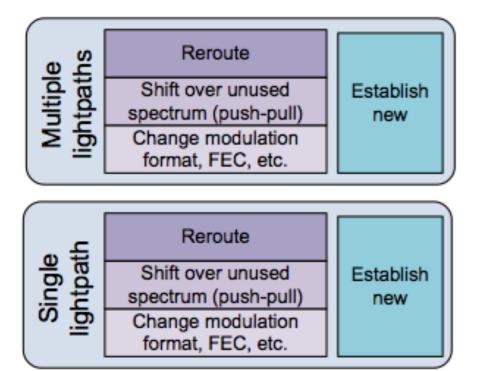
- Monitoring plane organized as a **hierarchy** of virtual monitoring entities
- Virtual entities at the bottom of the hierarchy (leafs) correspond to individual lightpaths



- Monitoring plane organized as a **hierarchy** of virtual monitoring entities
- Virtual entities at the bottom of the hierarchy (leafs) correspond to individual lightpaths
- Entities at higher levels may include ingress nodes, nodes corresponding to network regions, and others, **responsible for several subgroups of lightpaths**


- Monitoring plane organized as a **hierarchy** of virtual monitoring entities
- •Virtual entities at the bottom of the hierarchy (leafs) correspond to individual lightpaths
- Entities at higher levels may include ingress nodes, nodes corresponding to network regions, and others, **responsible for several subgroups of lightpaths**
- The hierarchy's root is the OAM Handler

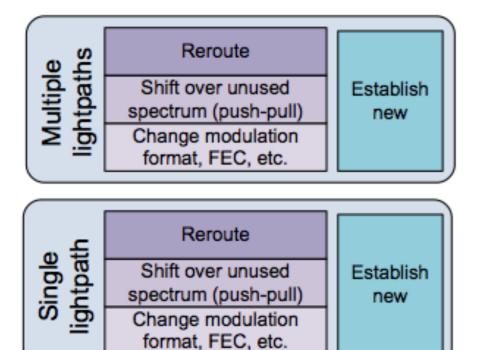
- Monitoring plane organized as a **hierarchy** of virtual monitoring entities
- •Virtual entities at the bottom of the hierarchy (leafs) correspond to individual lightpaths
- Entities at higher levels may include ingress nodes, nodes corresponding to network regions, and others, **responsible for several subgroups of lightpaths**
- The hierarchy's root is the OAM Handler
- Each monitoring virtual entity can take decisions (e.g., re-routing) for all lightpaths under its responsibility in the hierarchy



- Monitoring plane organized as a **hierarchy** of virtual monitoring entities
- Virtual entities at the bottom of the hierarchy (leafs) correspond to individual lightpaths
- Entities at higher levels may include ingress nodes, nodes corresponding to network regions, and others, **responsible for several subgroups of lightpaths**
- The hierarchy's root is the OAM Handler
- Each monitoring virtual entity can take decisions (e.g., re-routing) for all lightpaths under its responsibility in the hierarchy
- Each monitoring entity correlates received monitoring information and **passes "filtered" monitored information** to the upper-layers monitoring entities —> **HIGH SCALABILITY**

Library of Control Primitives

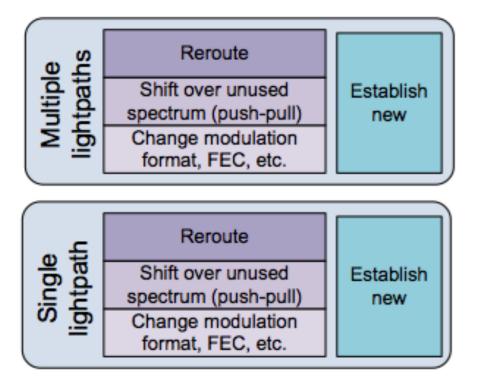
Control actions that can be applied by each virtual entity



Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:

Library of Control Primitives

Control actions that can be applied by each virtual entity

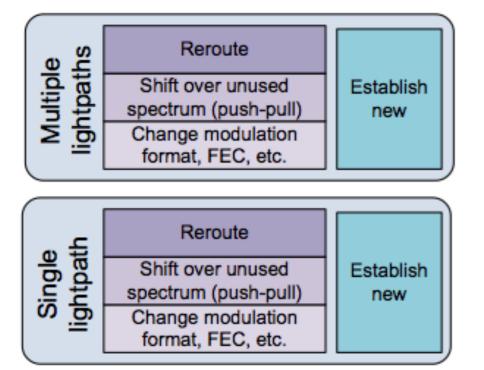


Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:

I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)

Library of Control Primitives

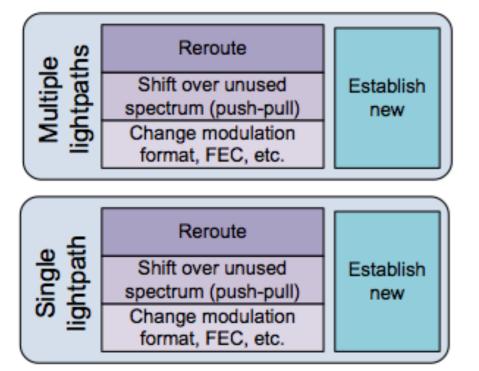
Control actions that can be applied by each virtual entity



Library of Control Primitives

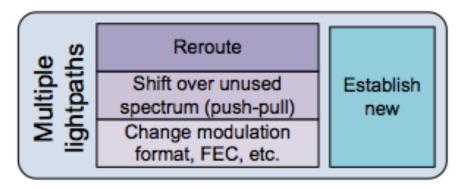
Control actions that can be applied by each virtual entity

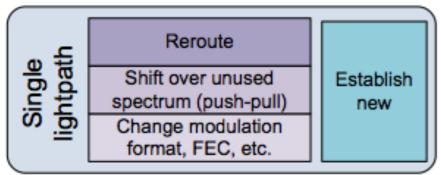
Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:


- I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)
- Shifting an established connection in the spectrum (e.g., through push-pull) to decrease the impact of cross-phase modulation (XPM) between lightpaths

Library of Control Primitives

Control actions that can be applied by each virtual entity



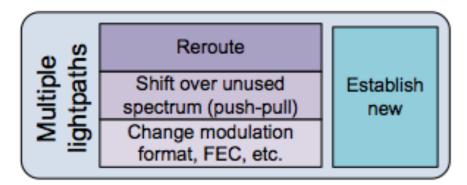

Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:

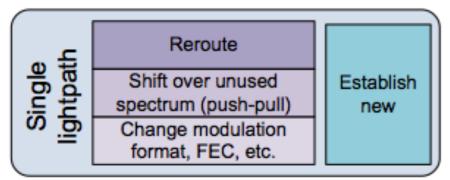
- I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)
- Shifting an established connection in the spectrum (e.g., through push-pull) to decrease the impact of cross-phase modulation (XPM) between lightpaths
- 3. **Re-routing** an established connection (over a protection path): e.g. to recover after a fiber cut

Library of Control Primitives

Control actions that can be applied by each virtual entity

Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:


- I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)
- Shifting an established connection in the spectrum (e.g., through push-pull) to decrease the impact of cross-phase modulation (XPM) between lightpaths
- 3. **Re-routing** an established connection (over a protection path): e.g. to recover after a fiber cut


Actions can involve **single** or **multiple** lightpaths

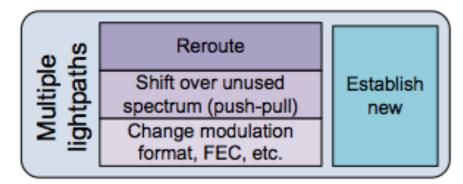
Also the establishment of new lightpaths (**Establish New**) can leverage information of OAM (e.g., avoiding failed links).

Library of Control Primitives

Control actions that can be applied by each virtual entity

Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:

- I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)
- Shifting an established connection in the spectrum (e.g., through push-pull) to decrease the impact of cross-phase modulation (XPM) between lightpaths
- 3. **Re-routing** an established connection (over a protection path): e.g. to recover after a fiber cut


Actions can involve **single** or **multiple** lightpaths

Also the establishment of new lightpaths (**Establish New**) can leverage information of OAM (e.g., avoiding failed links).

• Each virtual monitoring entity takes decisions/actions about LSPs under its responsibility

Library of Control Primitives

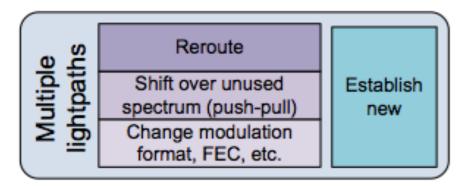
Control actions that can be applied by each virtual entity

ے ج	Reroute	
ingle	Shift over unused spectrum (push-pull)	Establish new
Slig	Change modulation format, FEC, etc.	

Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:

- I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)
- Shifting an established connection in the spectrum (e.g., through push-pull) to decrease the impact of cross-phase modulation (XPM) between lightpaths
- 3. **Re-routing** an established connection (over a protection path): e.g. to recover after a fiber cut

Actions can involve **single** or **multiple** lightpaths


Also the establishment of new lightpaths (Establish New) can leverage

information of OAM (e.g., avoiding failed links).

- Each virtual monitoring entity takes decisions/actions about LSPs under its responsibility
- Goal: select the less complex control primitive(s) when possible (e.g., FEC adaptation less complex than re-routing)

Library of Control Primitives

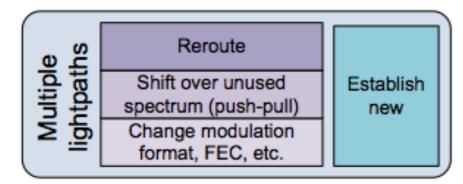
Control actions that can be applied by each virtual entity

_ 	Reroute	
ingle	Shift over unused spectrum (push-pull)	Establish new
ligl	Change modulation format, FEC, etc.	

Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:

- I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)
- Shifting an established connection in the spectrum (e.g., through push-pull) to decrease the impact of cross-phase modulation (XPM) between lightpaths
- 3. **Re-routing** an established connection (over a protection path): e.g. to recover after a fiber cut

Actions can involve **single** or **multiple** lightpaths


Also the establishment of new lightpaths (**Establish New**) can leverage

information of OAM (e.g., avoiding failed links).

- Each virtual monitoring entity takes decisions/actions about LSPs under its responsibility
- Goal: select the less complex control primitive(s) when possible (e.g., FEC adaptation less complex than re-routing)
 - more complex actions are taken at high levels in the hierarchy: e.g., on-line restoration is triggered by the OAM Handler since it has the general view of the network

Library of Control Primitives

Control actions that can be applied by each virtual entity

ے ا	Reroute	
ingle	Shift over unused spectrum (push-pull)	Establish new
ig Si	Change modulation format, FEC, etc.	

Possible actions to re-act against a degradation/failure are included in the Library of Control Primitives:

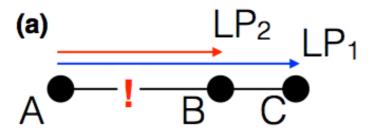
- I. **Re-configuration of the transmission parameters:** e.g., modulation format, baudrate, FEC to provide more robustness)
- Shifting an established connection in the spectrum (e.g., through push-pull) to decrease the impact of cross-phase modulation (XPM) between lightpaths
- 3. **Re-routing** an established connection (over a protection path): e.g. to recover after a fiber cut

Actions can involve **single** or **multiple** lightpaths

Also the establishment of new lightpaths (Establish New) can leverage

information of OAM (e.g., avoiding failed links).

- Each virtual monitoring entity takes decisions/actions about LSPs under its responsibility
- Goal: select the less complex control primitive(s) when possible (e.g., FEC adaptation less complex than re-routing)
 - more complex actions are taken at high levels in the hierarchy: e.g., on-line restoration is triggered by the OAM Handler since it has the general view of the network
- OAM Handler must be notified about actions to keep an overall up to date view



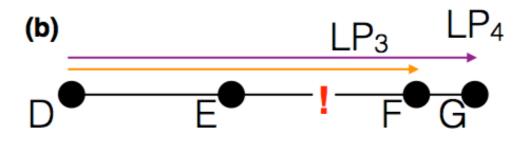
Use cases for the hierarchical monitoring architecture

Use cases for the proposed hierarchical architecture are presented concerning:

- The monitoring information correlation: with emphasis on when correlation solves fault localization or not. In the latter case, fault localization is delegated to higher hierarchical layers
- The possible **actions** that can be taken depending on the type of degradation/fault.

Use case: monitoring information correlation (1/2)

- two lightpaths active
- common link A-B is degraded
- lightpath monitors can be assumed in the DSP of receivers placed at node B and C, respectively, for \mbox{LP}_2 and \mbox{LP}_1
- Such monitors are related to the leaf level of the monitoring hierarchy
- Degradation is detected
 - A reaction can be locally taken, such as Forward Error Correction (FEC) adaptation. Indeed, if FEC does not require an increase of the occupied ITU-T *frequency slot* (i.e., the portion of spectrum associated with the LP that is switched), such operation can be immediately performed at the lightpath level
- monitoring entities (of LP₁ and LP₂) at the lightpath level send alarm to the upper monitoring layer, i.e. the one associated with the Ingress node (in this case A)
- such level **identifies link A as degraded link** (i.e., the only link in common), so that such "filtered" monitored information is sent to the OAM Handler without sending to the OAM Handler all the alarms


Use case: monitoring information correlation (2/2)

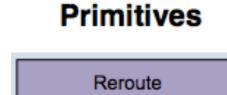
- two lightpaths active
- common link E-F is degraded
- monitors at the lightpath levels reveal a degradation and send alarm to the Ingress node monitoring layer (in this case D).
- monitoring entity associated with node D is not able to identify the degraded link, being unable to discern between links D-E and E-F
- this monitoring layer communicates with an upper layer (e.g., associated with a group of ingress nodes) that becomes in charge of fault localization. This layer can **correlate more alarm information** coming from different ingress nodes, thus having more chances to identify the degraded link.

Use case: monitoring information correlation (2/2)

- two lightpaths active
- common link E-F is degraded
- monitors at the lightpath levels reveal a degradation and send alarm to the Ingress node monitoring layer (in this case D).
- monitoring entity associated with node D is not able to identify the degraded link, being unable to discern between links D-E and E-F
- this monitoring layer communicates with an upper layer (e.g., associated with a group of ingress nodes) that becomes in charge of fault localization. This layer can **correlate more alarm information** coming from different ingress nodes, thus having more chances to identify the degraded link.

The proposed architecture **increases the scalability** of next generation optical networks while **guaranteeing reliability**

 a single link degradation (e.g., amplifier mulfunction) affects tens of lightpaths and generates a huge amount of alarms per lightpaths


sending all the alarms to the OAM Handler is NOT SCALABLE

 the hierarchical architecture filters monitoring information without overloading monitoring entities and OAM Handler

Use case: fault and actions

- Failure: connectivity not permitted.
 <u>ACTION</u>: re-routing (e.g., on the protection path)
 - Network element degradation/aging: performance degradation (e.g., BER increase).
 <u>ACTION</u>: transmission parameter adaptation to provide more robustness: e.g., lower-order modulation format or more redundancy through FEC adaptation.
 - Undesired degradations on specific frequencies: this typically occurs due to interference between channels (e.g., XPM).
 <u>ACTION</u>: shift of lightpath in the spectrum to reduce the interference

Library of Control

Shift over unused
spectrum (push-pull)
Change modulation
format, FEC, etc.

Simulations on increased scalability

The proposed hierarchical architecture permits to correlate and filter monitoring information before passing it to an upper layer —> this increases the scalability of the monitoring plane

- Simulations have been carried out to evaluate the number of received alarms by each monitoring entity
- The hierarchical architecture and a centralized OAM Handler solution are compared
- Link cut is randomly generated in links of a Spanish national backbone networks
- The number of generated alarms by the DSP of an affected lightpath is taken by a commercial system (13 alarms)
- Assumed hierarchy:
 - Level 0: composed of lightpath monitors sending to
 - Level I: composed of functional entities, each one correlating monitoring information of lightpaths starting from the same ingress node. Thus, at level I, there is a monitoring entity for each network node
 - Level 2: single entity correlating all ingress nodes alarms
 - OAM Handler receiving the info coming from Level 2
 - **Tab. 1:** Number of received alarms per monitoring entity ateach Level in case of link hard failure.

	Level 1	Level 2	OAM Handler
Centralized	not present	not present	420.03
Hierarchical	47.97	9.2	1

hierarchical architecture: high scalability

Further results at ECOC 2015...

Conclusions

ACK: This work was supported by the EC through the Horizon 2020 ORCHESTRA project (grant agreement 645360).

Conclusions

- This paper presented the hierarchical monitoring architecture proposed within the EU ORCHESTRA project
- OAM Handler functionalities of ABNO architecture are spread into several layers following a hierarchical approach, enabling to confine sets of monitored physical parameters within specific levels in the hierarchy
- This approach brings a limitation of the OAM Handler overload
- Monitored information can be correlated at each level of the hierarchy in an efficient way, and adaptation of transmission parameters (e.g., FEC) or re-routing are automatically triggered in case of physical layer degradations or faults

ACK: This work was supported by the EC through the Horizon 2020 ORCHESTRA project (grant agreement 645360).

Thank you!

email: castoldi@sssup.it

